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Abstract Terahertz imaging is one of the forefront topics
of imaging technology today. Denoising process is the key
for improving the resolution of the terahertz holographic
reconstructed image. Based on the fact that the weighted
nuclear norm minimization (WNNM) method preserves
the details of the reconstructed image well and the non-
local mean (NLM) algorithm performs better in the
removal of background noise, this paper proposes a new
method in which the NLM algorithm is used to improve
the WNNM method. The experimental observation and
quantitative analysis of the denoising results prove that the
new method has better denoising effect for the terahertz
holographic reconstructed image.

Keywords terahertz digital holography, weighted nuclear
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1 Introduction

Terahertz imaging is one of the frontiers in imaging
technology. Digital holographic imaging techniques have
attracted great attention of the related researchers due to the
special property about improving the image resolution
[1,2]. In this paper, we use the terahertz Gabor in-line
digital holography system proposed by our group, which is
based on a CO2 pumped 2.52 THz continuous-wave laser.
When the collimated wave illuminates the object, the wave
modulated by the object information is the object wave,
and the rest of the transmitting wave is the reference wave.
They interfere and form the interference pattern on the
charge coupled device (CCD). As the imaging object is
small and opaque, the high-resolution reconstruction of
terahertz in-line digital holography is realized by an
approximation operation in a construction process. Then

use computer numerical calculation to achieve the
reproduction process [3]. However, because of the
presence of noise in imaging and acquisition process, it
is necessary to denoise the reconstructed image to improve
the resolution. The denoising methods for the terahertz
holographic reconstructed image, such as non-local mean
filtering, wavelet denoising [4,5].
Image denoising is the reverse solving process of

obtaining the original image from the noise image. In
recent years, with the development of mathematics, some
new denoising methods have been proposed. At present,
the low rank matrice problem arouses people’s attention,
such as the multi-view low-rank dictionary learning for
image classification [6], the use of multi-spectral low-rank
structured dictionary learning and “like charges repulsion
and opposite charges attraction” law based multilinear
subspace analysis for face recognition [7,8]. Nuclear norm
minimization (NNM) is a low rank matrix approximation
method using the F-norm and minimum nuclear norm to
estimate the difference between the input and output
matrices. Most low rank matrices can be well recovered by
NNM. Based on NNM, weighted nuclear norm minimiza-
tion (WNNM) makes an important improvement that the
singular values are shrunk with different weights and more
details are preserved [9]. Optimized algorithms of the
WNNM are proposed successively. Du et al. proposed a
joint weighted nuclear norm and total variation regulariza-
tion method to denoise hyperspectral images in 2017 [10].
In this method, the Casorati matrix of hyperspectral images
is a key part and the total variation regularization is
imposed on each band of the hyperspectral to further
remove the Gaussian noise. Another image denoising
method via WNNM and Gaussian mixed model was
proposed [11] and it need to use non-noise natural image
blocks to train mixed Gaussian models, then perform the
block matching of WNNM under the guidance of the
mixed Gaussian models. However, there are no Casorati
matrix, band and non-noise image in the terahertz
holographic reconstructed image and it cannot be trained.
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In a word, the above two algorithms are not suitable for
terahertz holographic reconstructed image denoising.
Therefore, only the WNNM algorithm has been studied
and compared with the results of denoising.
Compared with the WNNM algorithm, non-local mean

(NLM) method [12,13] is an efficient technique for the
enhancement of images corrupted by noise. It is proven to
possess satisfactory denoising effect on the whole image.
The block-matching 3D (BM3D) method has an out-
standing effect in the denoising of visible images [14,15].
In the terahertz holographic imaging, only the occlusion

and transmissive parts are included. So the grayscale of the
standard image is only 0 or 255. There are quantities of
pixels on the edges of target and the grayscales of them will
change from 255 to 0. The complicated details of these
parts are easily lost in the denoising process. So we need to
protect these details as much as possible.
When denoising the terahertz holographic reconstructed

image, the WNNM method preserves the details well, but
the denoising effect of background noise is not satisfactory.
On the contrary, the NLM algorithm can remove back-
ground noise better, but the edge of target becomes blurry.
In this paper, combining the advantages of NLM and
WNNM, we proposed a new method called NLM-WNNM
to denoise the real terahertz holographic reconstructed
image, which was corrupted by Gaussian noises. In the
NLM-WNNM, we use the NLM algorithm to further
process the iteration result of WNNM in order to improve
the denoising effect. In addition, simulations were
conducted to investigate the generalization of the proposed
method.

2 Denoising methods

2.1 WNNM denoising method [9]

There is a relationship between the noise image D and the
standard image A: D = A + N, where N is the noise.
Denoising is the process of obtaining an estimated image Â
from the noise image D. In WNNM, when we input the
noise image D, first use the block matching method to
obtain the non-local similar blocks Dj And the size of the
non-local similar window is m2 � m2 in the m1 � m1
search window. Then use Eq. (1) to estimate the non-local
similar blocks Âj of the output image. Finally similar

blocks Âj are aggregated into the output image Â.

Âj ¼ argmin
Âj

1

�2
n
kDj – Âjk2F þ kÂjkK,*, (1)

where �2n is the noise variance of the input image D, it is
used to normalize fidelity term kDj – Âjk2F . kÂjkK,* is the
minimum kernel norm when the weights of the similar
blocks Âj are considered. When the output similar blocks

Âj are low rank matrices, the solution of Eq. (1) can be
estimated by processing the soft threshold of singular
values. And Eq. (1) is expressed as

Âj ¼ USKðΣÞVT, (2)

where U , Σ and V are the matrices obtained by the singular
value decomposition of similar blocks Dj, it can be
expressed as: ½U ,Σ,V � ¼ SVDðDjÞ. SKðΣÞ is a diagonal
matrix calculated with the weights, expressed as

SKðΣÞii ¼ max
�
�iðDjÞ – ki,0

�
, where �iðDjÞ is the ii th

diagonal element of the diagonal matrix Σ and the i th
singular value of similar blocks Dj. K ¼ k1,k2,:::,ki,:::,kn is
nonnegative weight coefficient, which is inversely propor-
tional to singular value �i Âj

� �
of the similar blocks Âj, the

equation is

ki ¼
c

ffiffiffi
n

p

�i Âj

� �þ ε
, (3)

where c is a contant, n is the number of similar blocks inD.
ε ¼ 10 – 16 is to avoid dividing by zero. �i Âj

� �
is the i th

singular value of similar blocks Âj. �i Âj

� �
is calculated by

�i Âj

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

�
�2
i ðDjÞ – n�2n,0

�r
: (4)

The process of obtaining the estimated image Â from the
input image D is called once iteration. Multiple iterations
are required unless Â does not change in the WNNM. To
preserve more details, the WNNM method updates the
input image before each iteration starts. The updated input
image not only uses the estimated image Â obtained from
the previous iteration but also takes into account the input
image D, that is

Dtþ1 ¼ Â
t þ a D – Â

t
� �

, (5)

where Â
t
is the estimated image of t th iteration (t³0), a is

fixed feedback value of each iteration. D – Â
t
is the

difference between the input image and the estimated
image of t th iteration. The flowchart of the WNNM
method is shown in Fig. 1.
The parameters that need to be set in Fig. 1 include: m1,

m2, �
2
n, c, a, the number of iterations T. First, find the

similar blocks of the input image and perform the singular
value decomposition. Then use Eqs. (2) – (4) to estimate
the similar blocks of the output image and calculate the
input image of each iteration by Eq. (5). Finally aggregate
all the estimated similar blocks to obtain the output image.
Multi-iterations are applied in the WNNM, and the input
image for each iteration is related to the estimated image
obtained from the previous iteration and original input
image.
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2.2 NLM method [12,13]

The NLM method estimates the gray values of the target
pixels with the weighted average value in the neighbor-
hood. Weights assigned to the pixels are determined by the
similarity with the target pixel. The NL½D�i is obtained by
estimating all the pixels i in the noise image D. In this
process, in order to shorten the denoising time, a search
window Ds with an appropriate size, instead of the whole
image, is used to calculate the similarity. The equation is

NL½D�i ¼ Σj2Ds
wði,jÞDj, (6)

where wði,jÞ is the similarity measuring function of pixels i
and j, calculated by the Euclidean distance between the
gray level matricesDðNiÞ andDðNjÞ. In addition, there is a
limitation that 0£wði,jÞ£1 and Σjwði,jÞ ¼ 1. wði,jÞ is
calculated by

wði,jÞ ¼ 1

zðiÞe
– kDðNiÞ –DðNjÞk22,a

h2 , (7)

where ZðiÞ is a normalized constant, calculated by

ZðiÞ ¼ Σie
– kDðNiÞ –DðNjÞk22,a

h2 (8)

where a>0 is a standard deviation of Gaussian kernel. h
acts as a filtering parameter related to the standard
deviation of the input image: h ¼ b�2. b is a well-chosen
constant, � is the standard deviation of the input image.
From Eqs. (7) and (8), it can be seen that the weight
function decreases exponentially, which indicates that the
larger the Euclidean distance between two pixels, the
smaller the similarity.

2.3 WNNM denoising method based on NLM algorithm
(NLM-WNNM algorithm)

According to Eq. (5), the input image of the ðt þ 1Þ th
iteration is related to the difference between the original
input image D and the estimated image of the t th iteration.

D – Â
t
includes the information of both the image details

and noise, and its quality directly influences the denoising
effect of WNNM algorithm. So we make the further

processing to D – Â
t
by using NLM algorithm. In the

NLM-WNNM algorithm, Eq. (5) is changed as follow:

Dtþ1 ¼ Â
t þ α� NLM D – Â

t
� �

, (9)

where t is the number of iteration (t³0), NLM is the NLM
method. The flowchart of the NLM-WNNM method is
shown in Fig. 2.
Compared with Fig. 1, the NLM algorithm is added into

the process of NLM-WNNM for denoising D – Â
t
and

Eq. (5) is replaced by Eq. (9).
Fig. 1 Flow diagram of WNNM method

Fig. 2 Flowchart of the NLM-WNNM method
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To evaluate the denoising effect quantitatively, it is
necessary to calculate the peak signal to noise ratio (PSNR)
and structural similarity index (SSIM) parameters. The
PSNR is calculated using the following equation:

PSNR ¼ 10lg
2552M � NX

M

X
N

ðX ði,jÞ – Y ði,jÞÞ2 , (10)

where X denotes the standard image and Y is the denoising
result. M ,N are the number of rows and columns of the
image. The mathematical expression of SSIM is

SSIM ¼ ð2uX uY þ C1Þð2�XY þ C2Þ
ðu2X þ u2Y þ C1Þð�2X þ �2

Y þ C2Þ
, (11)

where u is the mean and �2 is the variance. �XY is the
covariance of the two images. C1 ¼ ðk1LÞ2 and
C2 ¼ ðk2LÞ2, where L is the dynamic range of the pixel
values. By default, k1 ¼ 0:001,k2 ¼ 0:03.

3 Experimental results and analysis

3.1 Denoising results of the terahertz holographic
reconstructed image

This paper uses WNNM, NLM, BM3D and NLM-WNNM
algorithm to denoise the real terahertz holographic
reconstructed image with gray range of [0, 255] as
Fig. 3(a) shown. It is obtained by the terahertz Gabor

in-line digital holography system imaging for a gear.
Parameters are as follows: in the WNNM method, the
search window is 15� 15; the standard deviation is 18; the
number of iterations is 8; the feedback value is 0.69. In the
NLM algorithm, the search window is 7 � 7, the similarity
window is 5 � 5 and the filtering parameter h is 0.6. In the
BM3D algorithm, the standard deviation is 30.
Over-filtering may occur due to the simple combination

of the WNNM and NLM methods. Furthermore, the
feedback processing is introduced in the 2nd iteration and
the noise still accounts for a large proportion of the image
at the moment. Therefore, we need to optimize the
parameters of NLM-WNNM method. The filtering para-
meter of NLM-WNNM is 0.7. However, as the number of
iterations increases, the proportion of noise in the image
gradually decreases. So the parameters should be changed
again. The new filter parameter and feedback value are set
as 0.3 and 0.5. The real terahertz holographic reconstructed
image, the standard image, the histogram of the object
regions in the real image and the denoising results of
WNNM, NLM, BM3D and NLM-WNNM are shown in
Fig. 3. It is difficult to compare these methods because
there are many uniform regions in the image in which the
gray values are all 255. The PSNR and SSIM results of the
object regions are listed in Table 1.
Comparing the results shown in Fig. 3 and Table 1, the

noise in the image is closest to the Gaussian noise
according to Fig. 3(c). In Fig. 3(d), the WNNM method
preserves the details of the “gear” well, but there is still
obvious noise in the background. In Fig. 3(e), after

Fig. 3 Terahertz holographic reconstructed images. (a) Real image; (b) standard image; (c) histogram of the object regions in real image;
(d) denoised by WNNM; (e) denoised by NLM; (f) denoised by BM3D; (g) denoised by NLM-WNNM
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denoised by NLM, most of the background noise is
removed. However, some details of the “gear” are lost. In
Fig. 3(f), there is some noise in the internal of the “gear”
and the result is similar to that of NLMmethod. The reason
is that these two methods use the same way to find the
paths, and it is difficult to find the suitable paths in the
internal of the “gear.” So the internal noise is maintained
and regarded as the details of input image. In contrast, in
the NLM-WNNM method, there are more similar paths in
the difference image of the original input image and the
output image in each iteration, then the NLM method is
used to denoise the difference image. So it is easier to
remove the noise. As shown in Fig. 3(g), when the
denoising is performed using NLM-WNNM, the noise in
the background is well eliminated and the shape of the
“gear” remains unaffected. In addition, this new method
has the largest PSNR and SSIM, which is consistent with
the subjective evaluation. Therefore, the new method we
proposed is proven to provide a better denoising of the real
terahertz holographic reconstructed image.

3.2 Denoising results of visible image

To verify the generalization of the NLM-WNNM algo-
rithm, it was applied to denoise the visible images. Zero
mean additive white Gaussian noise with variance 0.01 are
added to the visible image to generate the noise image. The
size of the Lena image is 512 � 512 and the gray range is
[0,255]. Parameters are as follows. In the WNNM method,
the number of iterations is 14, the feedback value is 0.71.
In the NLM algorithm, the search window is 21 � 21, the
similarity window is 7 � 7 and the filtering parameter h is
0.41 [8]. The parameters of the proposed method are as
follows. The number of iterations is 16, the filtering
parameter h is 0.45, and other parameters in the NLM-
WNNM are the same as those of the above two algorithms.
The parameters of BM3D are default. The noise image, the
standard image and the denoising results of WNNM,
NLM, BM3D and NLM-WNNM are shown in Fig. 4. The
PSNR and SSIM results are listed in Table 2.
As shown in Table 2, it can be seen that the NLM-

WNNM method outperforms the NLM and WNNM
methods with the largest PSNR and SSIM when dealing
with Lena image. The performance of BM3D method is
best, because the Lena image is different from the terahertz
holographic reconstructed image, its gray is from 0 to 255
instead of only 0 and 255. For the whole image, it is easy to
correctly find the similar paths and set the threshold in the
3D transformation before the collaborative filtering. And
we can also see that the BM3D method is much better than
the WNNM and NLM methods, so it is acceptable that the

Table 1 PSNR and SSIM of terahertz image before and after denoised

method PSNR SSIM

real image 64.52 0.7662

WNNM 64.90 0.8779

NLM 64.88 0.8789

BM3D 64.85 0.8812

NLM-WNNM 65.15 0.8866

Fig. 4 Lena images. (a) Noise image; (b) standard image; (c) denoised by WNNM; (d) denoised by NLM; (e) denoised by NLM-
WNNM; (f) denoised by BM3D
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NLM-WNNM is not better than BM3D when denoising
Lena image.
However, it is difficult to visually evaluate the denoising

effect of WNNM, NLM, BM3D and NLM-WNNM from
the complicated details in Fig. 4. To make a clear
comparison, we choose parts of the image for comparison
and analysis. In the “hair” area, the region has a high
resolution and the change of grayscale is complicated. The
comparison results are shown in Fig. 5.
The selected area is marked by the cross in Fig. 5(a). As

shown in Figs. 5(b) and 5(c), in most areas, the gray values
after denoised by NLM-WNNM are closest to those of
standard image. It is evident that this new method performs

best when dealing with images where the change of
grayscales is complicated. And the situation is similar to
the “gear” in the terahertz holographic reconstructed
image.
The “eyeball” area in the Lena image mainly contains

uniform areas with a gradual change of grayscales. The
comparison results are shown in Fig. 6.
The selected area is marked by the cross in Fig. 6(a). As

shown in Figs. 6(b) and 6(c), in uniform areas, the gray
values after denoised by BM3D are closest to those of the
standard image, followed by NLM, NLM-WNNM and
WNNM. We can draw a conclusion that the BM3D has the
best denoising effect when dealing with images where the
change of grayscales is uniform, and the NLM-WNNM
does not have a better performance. Considering the above
results gained from Figs. 5 and 6, the NLM-WNNM
method is more suitable for the denoising of images with
complicated details and high resolution.

4 Conclusion

This paper proposed a new method called NLM-WNNM

Fig. 5 Comparison results. (a) Selected “hair” area; (b) columns 346 –400 at row 77 comparison results; (c) rows 62 –104 at column 372
comparison results

Table 2 PSNR and SSIM of the Lena image before and after denoised

method PSNR SSIM

noise image 68.20 0.6188

WNNM 78.43 0.9021

NLM 78.34 0.8944

NLM-WNNM 78.81 0.9132

BM3D 80.10 0.9261
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combining the advantages of WNNM and NLM algorithm.
Experimental results show that the NLM-WNNM method
has the best performance when applied to denoise the
terahertz Gabor in-line digital holography holographic
reconstructed image. However, when dealing with visible
images, though the new method is not better than BM3D, it
has a better denoising result compared with the original
methods. Simulation experiment results confirm that the
NLM-WNNM algorithm is promising in the denoising of
images with complicated details and high resolution.
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